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Abstract 

The objective of this study is to present numerical aspects related to the implementation of the 

interaction integral method for the purpose of determining the stress intensity factors in mode I 

and mixed-mode crack problems of functionally graded materials (FGM) and homogenous 

materials for a different form of cracking. This numerical development is based on the use of the 

finite element method (FEM), by the coupling of the Ansys-Matlab calculation codes. To validate 

the accuracy and reliability of the approach, the results obtained will be compared with other 

numerical results in the literature. The interaction integral method is one of the methods most 

compatible with the formulation of the finite element method. Therefore, we are interested in this 

study, in terms of the presentation of necessary steps which allow the resolution of a problem by 

finite elements for the mechanical problems. It is very important to note that the principle of the 

implementation of the “Integral M” technique is using scripts based on the coupling of two 

commercial software. 

Keywords: Stress intensity factors, Integral M, FGM, mixed-mode, FEM. 

1. Introduction 

The study of material fracture is important to the notion of fracture mechanics. The fracture 

mechanics approach has been proven to be highly helpful in creating techniques for quality 

control and in-service inspection, as well as in estimating the strength of isotopic and homogenous 

materials in the presence of faults or cracks. Since self-similar crack formation typically does not 

occur in composite materials, the application of fracture mechanics to composite materials is 

more difficult. The most frequent type of failure in FGM is the development and progression of 

cracks. Therefore, it is essential to design the FGM's components and increase fracture toughness. 

Finding analytical solutions to complex situations is challenging since the material characteristics 

of FGM are a function of spatial coordinates. Various engineering issues should be resolved using 

numerical techniques. Within the framework of linear fracture mechanics, several numerical 
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methods have been proposed to evaluate the stress state in the vicinity of the crack, based on the 

determination of the stress intensity factors (Blackburn, 1973; Mohammed et al. 2019; Ait Ferhat 

and Boulenouar, 2020; Blandford et al. 1981). Among these methods is the interaction integral 

method which has been the subject of several studies, used to analyze the problem of cracking in 

mixed-mode (Yu et al. 2009; Kim and Paulino, 2003; Réthoré et al. 2005; Ammendolea et al. 

2021; Feng et al. 2020).  

In this study, we test the efficiency and robustness of the developed calculation program and 

analyze cracks in functionally graded and homogenous materials under mechanical and thermal 

loads. For this purpose, two examples of validation will be presented. The obtained results will 

be compared with other numerical works existing in the literature. 

2. Theory: Formulation of the interaction integral 

When the crack is stressed in mixed-mode, it becomes necessary to determine the different stress 

intensity factors separately. From the J integral, Yau et al. (1980) have proposed a method to 

determine them. This method called interaction integral is very widely used (Gosz and Moran, 

2002). 

We consider a mechanical state as the sum of the current state of the structure ( , ,
rea rea rea

u  

) and a fictitious auxiliary state ( , ,
aux aux aux

u   ).  We consider two equilibrium states of the 

cracked body: State 1 is the real state of the studied problem satisfying the boundary conditions, 

and state 2 is a fictitious auxiliary state. We can then rewrite the J integral of the two states 

superimposed by Duflot (2004): 

 

( ) ( )

( ) ( ) ( ) ( )

1

1

( )

rea aux

tot tot rea aux i i

j ij ij j

u u
J W n d

x
  



  
     
  (1) 

where 

 
( ) ( ) ( ) ( ) ( )1

( )( )
2

tot rea aux rea aux

ij ij ij ij
W        (2) 

Rearranging the terms, we get: 
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 (3) 

 
( ) ( ) ( ) ( , )tot rea aux rea aux

J J J M     (4) 

Where 
( )rea

J J(rea)and 
( )aux

J  J(aux)are the J integrals of the current and auxiliary states, 

respectively. ( , )rea aux
M M(rea,aux) is the interaction integral of the two states: 

 

( ) ( )

( , ) ( , ) ( ) ( )
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1 1

aux rea

rea aux rea aux rea auxi i

j ij ij j

u u
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x x
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  (5) 

Where 
(1,2)

W W(1,2)is the mutual strain energy defined by: 
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( , ) ( ) ( ) ( ) ( )1

( )
2

rea aux rea aux aux rea

ij ij ij ij
W         (6) 

It is possible to develop the expression (3) for the superposition of states, resulting in: 
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 μ is the shear modulus. 

E* = E *
E E in plane stress, and 

2
1

E



 
 

 
  (

E

1-ν2
)in plane strain. 

Finally, we get: 
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M
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 (11) 

For a cracked two-dimensional problem  ( )
0

rea

III
K  (KIII

(rea)
= 0), the expression (11) then 

becomes:  

  ( , ) ( ) ( ) ( ) ( )

*

2rea aux rea aux rea aux

I I II IIM K K K K M
E

    (12) 

By choosing the auxiliary fields as each of the pure modes, it is then possible to identify the value 

of each of the stress intensity factors. We use the following two combinations: 

 
*
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2.1 Evaluation of the interaction integral (Integral M) 

We recall that the formulation of the Rice (1968) integral was defined as: 

 
u

J Wdy T ds
x




 

  (14) 

We consider a certain integral on the closed contour of Fig. 1 where the integrand is that of 

the integral of the equation (14) multiplied by a function q: 

 1

1

i

j ij j

u
I Wd m qd

x




 
   

 
  (15) 

where (m) is the normal outside the closed contour which equals (n) on 2 Γ2 and – nonΓ1 1  

and δ1i 1i  is a Kronecher parameter. 

 

Fig. 1. Integral J. 

The function qis chosen such that: 

 
1

2

1

0
q

 
 

 
 (16) 

 

Fig. 2. Function q on the integration elements. 

As q=0 on 2 and that the integrand is zero on   C+and  C-, the integral over the closed 

contour reduces to an integral over 1 Γ1. 
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By the theorem of divergence 
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One can easily show that the first term of the equation (18) is null in linear elasticity and 

consequently, the form in domain of the integral J Jis: 

 1
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i

j ij
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u q
I W dA

x xj
 
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Similarly, the interaction integral evaluated over a domain is given by Duflot (2004): 
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3. Numerical results and discussion 

3.1 The main Strategy and implementation of the method 

The major objective of the current computation program is to decompose a failure mode for the 

purpose of extracting the SIFs IK and IIK  KIIfrom the M-integral method. 

From the numerical point of view, the interaction integral method is the most compatible 

with the formulation of the finite element method. The expression (20) defining the M-integral 

technique can be written in the discretized form [14-15]: 

   ( ) ( ) ( ) ( ) ( )

,1 ,1 1 ,1 1

n ee p rea aux aux rea rea

ij j ij j jk jk i i pe p
M u u q Jac W    

 
     (21) 

where: ne en is the number of elements of the integration domain A. 

np Peis the number of integration points in an element, Jac |Jac| is the determinant of the 

Jacobian matrix, Jac Jacand pW  WPare the weights of the Gaussian points.  

The implementation of the resolution of the problem by the present approach (Eq.21) was 

done according to the following steps: 

Draw two circles of origin around the crack tip, with R11 andR22. The intersection between 

the two surfaces represents a set of elements called Jdomain (domain A) (see Fig. 3). The contour 

integration is transformed to a domain integral using the function q which has been defined by 

the equation (16). The finite element method requires the calculation of integrals on each of the 

elements of the mesh. For this purpose, one makes the integration on the elements of Jdomain, 

by choosing the points of Gauss for each element of Jdomain (Fig. 3) with: 

 
1 2 3, , ,......... nJdomain ele ele ele ele     (22) 
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Fig. 3. Gaussian points. 

1- determination of the values of the function q at each point of the Jdomain elements, q 

takes the value 1 inside the circle, 0 outside and values vary between 0 and 1 as shown 

in Fig. 4. 

 

Fig. 4. Representation of the Jdomain and the function q. 

2- Initialization calculation: 

  1 2 0, 0 0
T

M M I    to make iterative summations. 

3- for each element e of the set Jdomain, for each point of integration  ,i i  (ξi, ηi), we 

calculate:   

a) Shape functionsNi iN and their derivatives iN







∂Ni

∂ξ
and iN







∂Ni

∂η
. For the case of an 

isoparametric element with 4 nodes Q4 showed on Fig. 5, the functions iN  are 

determined by: 
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(x1,y1)
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2
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3

x

y

(a) (b)

η

ξ

 

Fig. 5. Linear geometric transformation of a Q4 element: (a) The real element; (b) The 

deformed element.  

b) The Jacobian Jac and their inverse 
1

Jac


  

For each element, the Jacobian matrix is expressed as a function of the derivatives of the 

known geometric transformation functions and the coordinates of the geometric nodes of the real 

element. Indeed: 
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The following transformation guarantees the transformation of the real element to the 

reference element: 
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The inverse transformation is provided by the inverse Jacobian matrixJac-1 1
Jac


such that: 
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The inverse relation then makes it possible to calculate the first derivatives with respect to 

the real coordinates of the interpolation functions. 

c) Determination of the values of the function q at each point of the Jdomain elements. 
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With 
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d) Extract SIFs ( )rea

IK KI
(rea)

 and  ( )rea

IIK KII
(rea)

 

 Mode I: we putKI
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= 1 ( )
1
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IK  , ( )
0

aux

IIK  KII
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= 0 

3.1.1 Calculation of the auxiliary stress fields 

For the two-dimensional linearized elasticity problem, in the case of an isotropic homogeneous 

material, the expressions of the auxiliary stress fields 
( )aux

ij σij
(aux)

can be expressed by: 
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where:  
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( )aux

ij σij
(aux)

 is the stress tensor, KI
(aux) ( )aux

IK KI
(rea)

 and  ( )aux

IIK KII
(aux)

 are the auxiliary stress 

intensity factors in mode I and mode II, respectively. r is the radial distance of the crack, 
II

ijf  

fij
IIis the function ofθ   the angle of the plane of the crack. 

3.1.2 Calculation of the auxiliary displacement fields 
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3.1.3 Calculation of the derivations of the auxiliary displacement fields 

The graduated field of auxiliary displacement 
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is evaluated:   
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1 5 5
2 1 cos cos 2 5 sin sin

2 2 2 28 2

aux

II

aux aux aux

I II

K k

u K k K k
r

  

   

 









    
      

    
     

           
     

 (33) 

3.1.4 Calculation of the auxiliary strain fields 

The auxiliary strain fields 
( )aux

ij εij
(aux)

can be calculated from the relations: 

    ( ) ( ) ( )

, ,

1
, , 1, 2

2

aux aux aux

ij i j j i
u u i j     (34) 

which gives: 
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 

( ) ( )

11 1,1

( ) ( )

22 2,2

( ) ( ) ( )

12 1,2 2,1

( ) ( )

21 12

1

2

aux aux

aux aux

aux aux aux

aux aux

u

u

u u







 

 





 




 (35) 

3.1.5 Calculation of strain energy 

The mutual strain energy 
( , )rea aux

W W(rea,aux) is defined by: 

 
( , ) ( ) ( ) ( ) ( )1

( ), ( , 1, 2)
2

rea aux rea aux aux rea

ij ij ij ij
W i j       (36) 

The stresses 
( )rea

ij  σij
(rea)

and the strains 
( )rea

ij  are connected between them by: 

In plane stress: 

 
   

11 11

22 22

12 12

1 0

1 0
1 1 2

(1 2 )
0 0

2

rea rea

E
   

   
 

  

 
    
    

      
        

 

  (37) 

In plane strain: 

 

11 11

22 222

12 12

1 0

1 0
1

(1 )
0 0

2

rea rea

E
  

  


  

 
   
    

    
       

 

  (38) 

Calculation of the interaction integral M: we calculate the integral M by iterative summation: 

   ( ) ( ) ( ) ( ) ( )

,1 ,1 1 ,1 1

n ee p rea aux aux rea rea

ij j ij j jk jk i i pe p
M u u q Jac W    

 
     (39) 

 Mode II: we pose: KII
(aux)

= 1  ( )
1

aux

IIK   , ( )
0

aux

IK  KI
(aux)

= 0 

For this mode, we redo the same steps as those used for mode I in order to calculate the 

interaction integral M. 

After having calculated the interaction integral M for the two failure modes, the SIFs, ( )rea

IK

KI
(rea)

 and ( )rea

IIK KII
(rea)

 are then determined by the relations: 

 
*

( )

2

rea

I I

E
K K M   (40) 

 
*

( )

2

rea

II II

E
K K M   (41) 
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In the case of FGM materials, the calculated Young's modulus 
*

tipE E E* = Etipin plane 

stress, and 
*

2
1

tipE
E



 
  

 
in plane strain,Etip tipE is calculated at the crack tip, and both thermal 

and mechanical loads have been considered to investigate crack interaction effect. 

3.2 Examples 

3.2.1 A curved crack in homogeneous plate 

Consider a thin plate with a curving crack. The plate's dimensions are L= 210 units and W= 70 

units (Fig. 6. (a)) made up of only one material. In this analysis, we considered young’s modulus 

E= 2.3 GPa and Poisson’s ratio =0,36 as material plate properties of a polycarbonate (PSM-1), 

with the curving crack having a varied angle 2α and constant radius R. Perpendicular to the curved 

crack, this structure was loaded under a constant uniaxial tensile stress. 

The numerical model carried out by using finite element calculation code has allowed us to 

determine the stress intensity factors from the displacement field. The solution of the problem 

has been calculated using 4 node quadratic elements in plane stress. The global mesh model of 

the plate is presented in Fig. 6. (b). 

For the purpose of verifying the independence of the integration contours on the evaluation 

of SIFs by the global approach, different domains are created from the contours surrounding the 

crack tip. Each contour encompasses the previously defined contour to which we add elements 

directly in contact with it. The integral interaction M was calculated through 03 domains (with 

R1=1 units, R2=2 units, R3= 3 units, R4= 4 units), as shown in Fig. 6. (c). 

2α

L

w

(a) (b) (c)

R1

R2

R3

R4

 

Fig. 6. (a) Dimensions of plate; (b) The global mesh of the plate with curved crack; (c) The 

detailed mesh and the areas of integration around the crack tip. 
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For this problem, the reference solutions for the stress intensity factor provided by Kablia et 

al. (2017) and Gdoutos (2005) are compared with our solution evaluated by the M-integral 

method. 

 

2 2

2

1 sin cos cos
32 2 2

sin cos
2 2

1 sin
2

IK R

  

 




  
  

   
 


 
 

 (42) 

 

2 2

2

1 sin cos sin
32 2 2

sin sin
2 2

1 sin
2

IIK R

  

 




  
  

   
 


 
 

 (43) 

 

Fig. 7. Variation of normalized SIF in mode I: Independent of integration domain. 

 

Fig. 8. Variation of normalized SIF in mode II: Independent of integration domain. 
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It is clearly seen in Figs 7 and 8 that the values of the normalized SIF in mode I and mode II 

are independent of the domain chosen. The calculation by this approach can also be performed 

far from the crack tip and its singularity. 

The results of the present study (M-integral), the numerical study by Kablia et al. (2017) and 

the analytical study by Gdoutos (2005) which show the stress intensity factors for the plate 

containing a curved crack subjected to traction in mode I, are given in Fig. 9, and for mode II in 

Fig. 10, where: 

 
sin

I

Inorm

K
K

r 
  (44) 

 
sin

II

IInorm

K
K

r 
  (45) 

 

Fig. 9. Evolution of the normalized stress intensity factors in mode I according to the opening 

crack angle. 

 

Fig. 10. Evolution of the normalized stress intensity factors in mode II according to the opening 

crack angle. 
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The comparative study has shown that the results obtained by our M-integral method are in 

good agreement with those obtained by the finite element method by Kablia et al. (2017) and the 

analytical method by Gdoutos (2005). This comparison allows us to conclude that the technique 

used, adequately describes the stress field in the vicinity of the crack tip. 

3.2.2 A thermally stressed hollow cylinder with two radial side cracks  

In this first example, an infinite hollow cylinder with two radial edge cracks is examined. The 

internal surface of the hollow cylinder is where the cracks are located. A permanent temperature 

gradient is prescribed with temperature T1= 30° on the internal surface R1= 80 units and T2= 

200° on the external surface R2= 100 units. Because of the symmetry, only a half of the cross 

section is analyzed with the boundary conditions shown in Fig.11. (a). To test the computer code, 

we have selected homogeneous isotropic material properties: E= 7.8×10-1 GPa, ν = 0.3 and 

thermal expansion coefficient α=0.125×10-4 1  θ-1. The structure considered is meshed by 

quadratic elements, and particularly, special elements were used to characterize the singularity 

around the crack tip (Fig. 11. (b)), and the crack length is indicated in (a). The normalized stress 

intensity factor is defined as: 

  
 2 1

1I

I

K
f

Ea



  





 (46) 

U1=0

U2=0

a

T2

T1

R1

R2

(a)

r1

r2

r3

r4

(b)

 

Fig. 11. (a) Hollow cylinder with boundary conditions; (b) Global and detail FE mesh for 

hollow cylinder. 
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Fig. 12. The numerical results for variation of the normalized SIF with the crack length. 

Variation of the normalized SIF with the crack length is presented in Fig. 12. One can observe 

that SIF increases with increasing the length of cracks. This comparison indicates good agreement 

between the results obtained in mode I. The numerical procedure thus gives a very satisfactory 

result, in the case of the cracks located at the material gradation. 

4. Conclusions 

The main objective of this paper is to present the principle of the implementation of the domain 

integral method in FGM and homogenous materials, in order to determine the SIF in different 

modes. This numerical development is based on the use of the method element finite, by a 

combined calculation between software Ansys and Matlab.  

For the purpose of verifying the independence of the integration contours on the evaluation 

of the SIFs by the global approach, different domains are created from the contours surrounding 

the crack tip. 

Mode I and mixed-mode crack problems of FGM and homogenous materials are presented. 

It was found that all the SIFs computed by the presented formulations are equally accurate. 

The results show the variation of the SIF values depending on crack sizes (a). It can be clearly 

seen that the values of the SIF are independent of the chosen domain. 

The link between Matlab and software dedicated to finite element calculations such as Ansys 

will make it possible to obtain more precise results. Moreover, with this interaction, problems 

with more complex geometries can be handled. The calculation by this approach can also be 

carried out far from the crack tip and its singularity, which makes the calculation more precise. 

The good performance of the developed program has been clearly demonstrated and 

validated, by numerical and analytical approaches, through sufficiently varied examples of 

applications. 
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